

 [image: DOI] [https://doi.org/10.1145/3206098.3206111] [image: Pypi] [https://pypi.org/project/RMDL/] [image: arxiv] [https://arxiv.org/abs/1805.01890] [image: werckerstatus] [https://app.wercker.com/project/byKey/3a564158e809971e2f7416beba5d05af] [image: appveyor] [https://ci.appveyor.com/project/kk7nc/RMDL] [image: BuildStatus] [https://travis-ci.org/kk7nc/RMDL] [image: Join the chat at https://gitter.im/RMDL-Random-Multimodel-Deep-Learning] [https://gitter.im/RMDL-Random-Multimodel-Deep-Learning/Lobby?source=orgpage] [image: PowerPoint] [https://github.com/kk7nc/RMDL/blob/master/docs/RMDL.pdf] [image: researchgate] [https://www.researchgate.net/publication/324922651_RMDL_Random_Multimodel_Deep_Learning_for_Classification] [image: Binder] [https://mybinder.org/v2/gh/kk7nc/RMDL/master] [image: pdf] [https://github.com/kk7nc/RMDL/blob/master/docs/ACM-RMDL.pdf] [image: GitHublicense] [image: twitter] [https://twitter.com/intent/tweet?text=RMDL:%20Random%20Multimodel%20Deep%20Learning%20for%20Classification%0aGitHub:&url=https://github.com/kk7nc/RMDL&hashtags=DeepLearning,classification,MachineLearning,deep_neural_networks,Image_Classification,Text_Classification,EnsembleLearning]

Referenced paper : RMDL: Random Multimodel Deep Learning for
Classification [https://www.researchgate.net/publication/324922651_RMDL_Random_Multimodel_Deep_Learning_for_Classification]

Random Multimodel Deep Learning (RMDL):

A new ensemble, deep learning approach for classification. Deep learning models have achieved state-of-the-art results across many domains. RMDL solves the problem of finding the best deep learning structure and architecture while simultaneously improving robustness and accuracy through ensembles of deep learning architectures. RDML can accept as input a variety of data to include text, video, images, and symbolic.

[image: RMDL]

Random Multimodel Deep Learning (RDML) architecture for classification.
RMDL includes 3 Random models, oneDNN classifier at left, one Deep CNN
classifier at middle, and one Deep RNN classifier at right (each unit could be LSTMor GRU).

Installation

There are pip and git for RMDL installation:

Using pip

pip install RMDL

Using git

git clone --recursive https://github.com/kk7nc/RMDL.git

The primary requirements for this package are Python 3 with Tensorflow. The requirements.txt file
contains a listing of the required Python packages; to install all requirements, run the following:

pip -r install requirements.txt

Or

pip3 install -r requirements.txt

Or:

conda install --file requirements.txt

Documentation:

The exponential growth in the number of complex datasets every year requires more enhancement in
machine learning methods to provide robust and accurate data classification. Lately, deep learning
approaches have been achieved surpassing results in comparison to previous machine learning algorithms
on tasks such as image classification, natural language processing, face recognition, and etc. The
success of these deep learning algorithms relys on their capacity to model complex and non-linear
relationships within data. However, finding the suitable structure for these models has been a challenge
for researchers. This paper introduces Random Multimodel Deep Learning (RMDL): a new ensemble, deep learning
approach for classification. RMDL solves the problem of finding the best deep learning structure and
architecture while simultaneously improving robustness and accuracy through ensembles of deep
learning architectures. In short, RMDL trains multiple models of Deep Neural Network (DNN),
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in parallel and combines
their results to produce better result of any of those models individually. To create these models,
each deep learning model has been constructed in a random fashion regarding the number of layers and
nodes in their neural network structure. The resulting RDML model can be used for various domains such
as text, video, images, and symbolic. In this Project, we describe RMDL model in depth and show the results
for image and text classification as well as face recognition. For image classification, we compared our
model with some of the available baselines using MNIST and CIFAR-10 datasets. Similarly, we used four
datasets namely, WOS, Reuters, IMDB, and 20newsgroup and compared our results with available baselines.
Web of Science (WOS) has been collected by authors and consists of three sets~(small, medium and large set).
Lastly, we used ORL dataset to compare the performance of our approach with other face recognition methods.
These test results show that RDML model consistently outperform standard methods over a broad range of
data types and classification problems.

Datasets for RMDL:

Text Datasets:

	IMDB Dataset [http://ai.stanford.edu/~amaas/data/sentiment/]

	This dataset contains 50,000 documents with 2 categories.

	Reters-21578 Dataset [https://keras.io/datasets/]

	This dataset contains 21,578 documents with 90 categories.

	20Newsgroups Dataset [https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups]

	This dataset contains 20,000 documents with 20 categories.

	Web of Science Dataset (DOI:
10.17632/9rw3vkcfy4.2 [http://dx.doi.org/10.17632/9rw3vkcfy4.2])

	Web of Science Dataset
WOS-11967 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 11,967 documents with 35 categories which
include 7 parents categories.

	Web of Science Dataset
WOS-46985 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 46,985 documents with 134 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-5736 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 5,736 documents with 11 categories which
include 3 parents categories.

Image datasets:

	MNIST Dataset [https://en.wikipedia.org/wiki/MNIST_database]

	The MNIST database contains 60,000 training images and 10,000
testing images.

	CIFAR-10 Dataset [https://www.cs.toronto.edu/~kriz/cifar.html]

	The CIFAR-10 dataset consists of 60000 32x32 colour images in 10
classes, with 6000 images per class. There are 50000 training
images and 10000 test images.

Face Recognition

The Database of Faces (The Olivetti Faces
Dataset) [http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html]

	The The Database of Faces dataset consists of 400 92x112 colour
images and grayscale in 40 person

Requirements for RMDL :

General:

	Python 3.5 or later see Instruction
Documents [https://www.python.org/]

	TensorFlow see Instruction
Documents [https://www.tensorflow.org/install/install_linux].

	scikit-learn see Instruction
Documents [http://scikit-learn.org/stable/install.html]

	Keras see Instruction Documents [https://keras.io/]

	scipy see Instruction
Documents [https://www.scipy.org/install.html]

GPU (if you want to run on GPU):

	CUDA® Toolkit 8.0. For details, see NVIDIA’s
documentation [https://developer.nvidia.com/cuda-toolkit].

	The NVIDIA drivers associated with CUDA Toolkit
8.0 [http://www.nvidia.com/Download/index.aspx].

	cuDNN v6. For details, see NVIDIA’s
documentation [https://developer.nvidia.com/cudnn].

	GPU card with CUDA Compute Capability 3.0 or higher.

	The libcupti-dev library,

Text and Document Classification

	Download GloVe: Global Vectors for Word Representation Instruction
Documents [https://nlp.stanford.edu/projects/glove/]

	Set data directory into
Global.py [https://github.com/kk7nc/RMDL/blob/master/src/Global.py]

	if you are not setting GloVe directory, GloVe will be downloaded

Parameters:

Text_Classification

from RMDL import RMDL_Text

Text_Classification(x_train, y_train, x_test, y_test, batch_size=128,
 EMBEDDING_DIM=50,MAX_SEQUENCE_LENGTH = 500, MAX_NB_WORDS = 75000,
 GloVe_dir="", GloVe_file = "glove.6B.50d.txt",
 sparse_categorical=True, random_deep=[3, 3, 3], epochs=[500, 500, 500], plot=True,
 min_hidden_layer_dnn=1, max_hidden_layer_dnn=8, min_nodes_dnn=128, max_nodes_dnn=1024,
 min_hidden_layer_rnn=1, max_hidden_layer_rnn=5, min_nodes_rnn=32, max_nodes_rnn=128,
 min_hidden_layer_cnn=3, max_hidden_layer_cnn=10, min_nodes_cnn=128, max_nodes_cnn=512,
 random_state=42, random_optimizor=True, dropout=0.05):

Input

	x_train

	y_train

	x_test

	y_test

batch_size

	batch_size: Integer. Number of samples per gradient update. If unspecified, it will default to 128.

EMBEDDING_DIM

	batch_size: Integer. Shape of word embedding (this number should be same with GloVe or other pre-trained embedding techniques that be used), it will default to 50 that used with pain of glove.6B.50d.txt file.

MAX_SEQUENCE_LENGTH

	MAX_SEQUENCE_LENGTH: Integer. Maximum length of sequence or document in datasets, it will default to 500.

MAX_NB_WORDS

	MAX_NB_WORDS: Integer. Maximum number of unique words in datasets, it will default to 75000.

GloVe_dir

	GloVe_dir: String. Address of GloVe or any pre-trained directory, it will default to null which glove.6B.zip will be download.

GloVe_file

	GloVe_dir: String. Which version of GloVe or pre-trained word emending will be used, it will default to glove.6B.50d.txt.

	NOTE: if you use other version of GloVe EMBEDDING_DIM must be same dimensions.

sparse_categorical

	sparse_categorical: bool. When target’s dataset is (n,1) should be True, it will default to True.

random_deep

	random_deep: Integer [3]. Number of ensembled model used in RMDL random_deep[0] is number of DNN, random_deep[1] is number of RNN, random_deep[0] is number of CNN, it will default to [3, 3, 3].

epochs

	epochs: Integer [3]. Number of epochs in each ensembled model used in RMDL epochs[0] is number of epochs used in DNN, epochs[1] is number of epochs used in RNN, epochs[0] is number of epochs used in CNN, it will default to [500, 500, 500].

plot

	plot: bool. True: shows confusion matrix and accuracy and loss

min_hidden_layer_dnn

	min_hidden_layer_dnn: Integer. Lower Bounds of hidden layers of DNN used in RMDL, it will default to 1.

max_hidden_layer_dnn

	max_hidden_layer_dnn: Integer. Upper bounds of hidden layers of DNN used in RMDL, it will default to 8.

min_nodes_dnn

	min_nodes_dnn: Integer. Lower bounds of nodes in each layer of DNN used in RMDL, it will default to 128.

max_nodes_dnn

	max_nodes_dnn: Integer. Upper bounds of nodes in each layer of DNN used in RMDL, it will default to 1024.

min_hidden_layer_rnn

	min_hidden_layer_rnn: Integer. Lower Bounds of hidden layers of RNN used in RMDL, it will default to 1.

max_hidden_layer_rnn

	man_hidden_layer_rnn: Integer. Upper Bounds of hidden layers of RNN used in RMDL, it will default to 5.

min_nodes_rnn

	min_nodes_rnn: Integer. Lower bounds of nodes (LSTM or GRU) in each layer of RNN used in RMDL, it will default to 32.

max_nodes_rnn

	max_nodes_rnn: Integer. Upper bounds of nodes (LSTM or GRU) in each layer of RNN used in RMDL, it will default to 128.

min_hidden_layer_cnn

	min_hidden_layer_cnn: Integer. Lower Bounds of hidden layers of CNN used in RMDL, it will default to 3.

max_hidden_layer_cnn

	max_hidden_layer_cnn: Integer. Upper Bounds of hidden layers of CNN used in RMDL, it will default to 10.

min_nodes_cnn

	min_nodes_cnn: Integer. Lower bounds of nodes (2D convolution layer) in each layer of CNN used in RMDL, it will default to 128.

max_nodes_cnn

	min_nodes_cnn: Integer. Upper bounds of nodes (2D convolution layer) in each layer of CNN used in RMDL, it will default to 512.

random_state

	random_state : Integer, RandomState instance or None, optional (default=None)

	If Integer, random_state is the seed used by the random number generator;

random_optimizor

	random_optimizor : bool, If False, all models use adam optimizer. If True, all models use random optimizers. it will default to True

dropout

	dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.

Image_Classification

from RMDL import RMDL_Image

Image_Classification(x_train, y_train, x_test, y_test, shape, batch_size=128,
 sparse_categorical=True, random_deep=[3, 3, 3], epochs=[500, 500, 500], plot=True,
 min_hidden_layer_dnn=1, max_hidden_layer_dnn=8, min_nodes_dnn=128, max_nodes_dnn=1024,
 min_hidden_layer_rnn=1, max_hidden_layer_rnn=5, min_nodes_rnn=32, max_nodes_rnn=128,
 min_hidden_layer_cnn=3, max_hidden_layer_cnn=10, min_nodes_cnn=128, max_nodes_cnn=512,
 random_state=42, random_optimizor=True, dropout=0.05)

Input

	x_train

	y_train

	x_test

	y_test

shape

	shape: np.shape . shape of image. The most common situation would be a 2D input with shape (batch_size, input_dim).

batch_size

	batch_size: Integer. Number of samples per gradient update. If unspecified, it will default to 128.

sparse_categorical

	sparse_categorical: bool. When target’s dataset is (n,1) should be True, it will default to True.

random_deep

	random_deep: Integer [3]. Number of ensembled model used in RMDL random_deep[0] is number of DNN, random_deep[1] is number of RNN, random_deep[0] is number of CNN, it will default to [3, 3, 3].

epochs

	epochs: Integer [3]. Number of epochs in each ensembled model used in RMDL epochs[0] is number of epochs used in DNN, epochs[1] is number of epochs used in RNN, epochs[0] is number of epochs used in CNN, it will default to [500, 500, 500].

plot

	plot: bool. True: shows confusion matrix and accuracy and loss

min_hidden_layer_dnn

	min_hidden_layer_dnn: Integer. Lower Bounds of hidden layers of DNN used in RMDL, it will default to 1.

max_hidden_layer_dnn

	max_hidden_layer_dnn: Integer. Upper bounds of hidden layers of DNN used in RMDL, it will default to 8.

min_nodes_dnn

	min_nodes_dnn: Integer. Lower bounds of nodes in each layer of DNN used in RMDL, it will default to 128.

max_nodes_dnn

	max_nodes_dnn: Integer. Upper bounds of nodes in each layer of DNN used in RMDL, it will default to 1024.

min_nodes_rnn

	min_nodes_rnn: Integer. Lower bounds of nodes (LSTM or GRU) in each layer of RNN used in RMDL, it will default to 32.

max_nodes_rnn

	maz_nodes_rnn: Integer. Upper bounds of nodes (LSTM or GRU) in each layer of RNN used in RMDL, it will default to 128.

min_hidden_layer_cnn

	min_hidden_layer_cnn: Integer. Lower Bounds of hidden layers of CNN used in RMDL, it will default to 3.

max_hidden_layer_cnn

	max_hidden_layer_cnn: Integer. Upper Bounds of hidden layers of CNN used in RMDL, it will default to 10.

min_nodes_cnn

	min_nodes_cnn: Integer. Lower bounds of nodes (2D convolution layer) in each layer of CNN used in RMDL, it will default to 128.

max_nodes_cnn

	min_nodes_cnn: Integer. Upper bounds of nodes (2D convolution layer) in each layer of CNN used in RMDL, it will default to 512.

random_state

	random_state : Integer, RandomState instance or None, optional (default=None)

	If Integer, random_state is the seed used by the random number generator;

random_optimizor

	random_optimizor : bool, If False, all models use adam optimizer. If True, all models use random optimizers. it will default to True

dropout

	dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.

Example

MNIST

	The MNIST database contains 60,000 training images and 10,000 testing images.

Import Packages

from keras.datasets import mnist
import numpy as np
from RMDL import RMDL_Image as RMDL

Load Data

(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train_D = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')
X_test_D = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')
X_train = X_train_D / 255.0
X_test = X_test_D / 255.0
number_of_classes = np.unique(y_train).shape[0]
shape = (28, 28, 1)

Using RMDL

batch_size = 128
sparse_categorical = 0
n_epochs = [100, 100, 100] ## DNN-RNN-CNN
Random_Deep = [3, 3, 3] ## DNN-RNN-CNN

RMDL.Image_Classification(X_train, y_train, X_test, y_test,shape,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs)

IMDB

	This dataset contains 50,000 documents with 2 categories.

Import Packages

import sys
import os
from RMDL import text_feature_extraction as txt
from keras.datasets import imdb
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

print("Load IMDB dataset....")
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=MAX_NB_WORDS)
print(len(X_train))
print(y_test)
word_index = imdb.get_word_index()
index_word = {v: k for k, v in word_index.items()}
X_train = [txt.text_cleaner(' '.join(index_word.get(w) for w in x)) for x in X_train]
X_test = [txt.text_cleaner(' '.join(index_word.get(w) for w in x)) for x in X_test]
X_train = np.array(X_train)
X_train = np.array(X_train).ravel()
print(X_train.shape)
X_test = np.array(X_test)
X_test = np.array(X_test).ravel()

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [100, 100, 100] ## DNN--RNN-CNN
Random_Deep = [3, 3, 3] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=sparse_categorical,
 random_deep=Random_Deep,
 epochs=n_epochs)

Web Of Science

	Linke of dataset: [image: Data] [http://dx.doi.org/10.17632/9rw3vkcfy4.6]

	Web of Science Dataset
WOS-11967 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 11,967 documents with 35 categories which
include 7 parents categories.

	Web of Science Dataset
WOS-46985 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 46,985 documents with 134 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-5736 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 5,736 documents with 11 categories which
include 3 parents categories.

Import Packages

from RMDL import text_feature_extraction as txt
from sklearn.model_selection import train_test_split
from RMDL.Download import Download_WOS as WOS
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

path_WOS = WOS.download_and_extract()
fname = os.path.join(path_WOS,"WebOfScience/WOS11967/X.txt")
fnamek = os.path.join(path_WOS,"WebOfScience/WOS11967/Y.txt")
with open(fname, encoding="utf-8") as f:
 content = f.readlines()
 content = [txt.text_cleaner(x) for x in content]
with open(fnamek) as fk:
 contentk = fk.readlines()
contentk = [x.strip() for x in contentk]
Label = np.matrix(contentk, dtype=int)
Label = np.transpose(Label)
np.random.seed(7)
print(Label.shape)
X_train, X_test, y_train, y_test = train_test_split(content, Label, test_size=0.2, random_state=4)

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [5000, 500, 500] ## DNN--RNN-CNN
Random_Deep = [3, 3, 3] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs,no_of_classes=12)

Reuters-21578

	This dataset contains 21,578 documents with 90 categories.

Import Packages

import sys
import os
import nltk
nltk.download("reuters")
from nltk.corpus import reuters
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

documents = reuters.fileids()

train_docs_id = list(filter(lambda doc: doc.startswith("train"),
 documents))
test_docs_id = list(filter(lambda doc: doc.startswith("test"),
 documents))
X_train = [(reuters.raw(doc_id)) for doc_id in train_docs_id]
X_test = [(reuters.raw(doc_id)) for doc_id in test_docs_id]
mlb = MultiLabelBinarizer()
y_train = mlb.fit_transform([reuters.categories(doc_id)
 for doc_id in train_docs_id])
y_test = mlb.transform([reuters.categories(doc_id)
 for doc_id in test_docs_id])
y_train = np.argmax(y_train, axis=1)
y_test = np.argmax(y_test, axis=1)

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [20, 500, 50] ## DNN--RNN-CNN
Random_Deep = [3, 0, 0] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs)

Olivetti Faces

	There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement).

Import Packages

from sklearn.datasets import fetch_olivetti_faces
from sklearn.model_selection import train_test_split
from RMDL import RMDL_Image as RMDL

Load Data

number_of_classes = 40
shape = (64, 64, 1)
data = fetch_olivetti_faces()
X_train, X_test, y_train, y_test = train_test_split(data.data,
 data.target, stratify=data.target, test_size=40)
X_train = X_train.reshape(X_train.shape[0], 64, 64, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 64, 64, 1).astype('float32')

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [500, 500, 50] ## DNN--RNN-CNN
Random_Deep = [0, 0, 1] ## DNN--RNN-CNN

RMDL.Image_Classification(X_train, y_train, X_test, y_test,
 shape,
 random_optimizor=False,
 batch_size=batch_size,
 random_deep=Random_Deep,
 epochs=n_epochs)

More Exanmple
link [https://github.com/kk7nc/RMDL/tree/master/Examples]

[image: Results]

Error and Comments:

Send an email to kk7nc@virginia.edu

Citations

@inproceedings{Kowsari2018RMDL,
title={RMDL: Random Multimodel Deep Learning for Classification},
author={Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E. and Jafari Meimandi, Kiana and Barnes, Laura E.},
booktitle={Proceedings of the 2018 International Conference on Information System and Data Mining},
year={2018},
DOI={https://doi.org/10.1145/3206098.3206111},
organization={ACM}
}

Index

 [image: _images/3206098.3206111-blue.svg]DOI [https://doi.org/10.1145/3206098.3206111]
[image: _images/arXiv-1805.01890-red.svg]arxiv [https://arxiv.org/abs/1805.01890]
[image: _images/Pypi-RMDL%201.0.0-blue.svg]Pypi [https://pypi.org/project/RMDL/]
[image: _images/master.svg]werckerstatus [https://app.wercker.com/project/byKey/3a564158e809971e2f7416beba5d05af]
[image: _images/RMDL.svg]appveyor [https://ci.appveyor.com/project/kk7nc/RMDL]
[image: _images/RMDL1.svg]BuildStatus [https://travis-ci.org/kk7nc/RMDL]
[image: _images/Join%20Chat.svg]gitter [https://gitter.im/RMDL-Random-Multimodel-Deep-Learning/Lobby?source=orgpage]
[image: _images/Presentation-download-red.svg]PowerPoint [https://github.com/kk7nc/RMDL/blob/master/docs/RMDL.pdf]
[image: _images/ResearchGate-RMDL-blue.svg]researchgate [https://www.researchgate.net/publication/324922651_RMDL_Random_Multimodel_Deep_Learning_for_Classification]
[image: _images/badge.svg]Binder [https://mybinder.org/v2/gh/kk7nc/RMDL/master]
[image: _images/pdf-download-red.svg]pdf [https://github.com/kk7nc/RMDL/blob/master/docs/ACM-RMDL.pdf]
[image: _images/licence-GPL-blue.svg]GitHublicense
[image: _images/shields.io.svg]twitter [https://twitter.com/intent/tweet?text=RMDL:%20Random%20Multimodel%20Deep%20Learning%20for%20Classification%0aGitHub:&url=https://github.com/kk7nc/RMDL&hashtags=DeepLearning,classification,MachineLearning,deep_neural_networks,Image_Classification,Text_Classification,EnsembleLearning]

Referenced paper : RMDL: Random Multimodel Deep Learning for
Classification [https://www.researchgate.net/publication/324922651_RMDL_Random_Multimodel_Deep_Learning_for_Classification]

Random Multimodel Deep Learning (RMDL):

A new ensemble, deep learning approach for classification. Deep learning
models have achieved state-of-the-art results across many domains. RMDL
solves the problem of finding the best deep learning structure and
architecture while simultaneously improving robustness and accuracy
through ensembles of deep learning architectures. RDML can accept
asinput a variety data to include text, video, images, and symbolic.

[image: _images/RDL.jpg]RDL

Overview of RDML: Random Multimodel Deep Learning for classification.
The RMDL includesnRandom modelswhich aredrandom model of DNN
classifiers, cmodels of CNN classifiers, andrRNN classifiers
wherer+c+d=n.

[image: _images/RMDL.jpg]RMDL

Random Multimodel Deep Learning (RDML) architecture for classification.
RMDL includes 3 Random models, oneDNN classifier at left, one Deep CNN
classifier at middle, and one Deep RNN classifier at right (each unit
could be LSTMor GRU).

Installation

There are git RMDL in this repository; to clone all the needed files,
please use:

Using pip

pip install RMDL

Using git

git clone --recursive https://github.com/kk7nc/RMDL.git

The primary requirements for this package are Python 3 with Tensorflow.
The requirements.txt file contains a listing of the required Python
packages; to install all requirements, run the following:

pip -r install requirements.txt

Or

pip3 install -r requirements.txt

Or:

conda install --file requirements.txt

Documentation:

The exponential growth in the number of complex datasets every year
requires more enhancement in machine learning methods to provide robust
and accurate data classification. Lately, deep learning approaches have
been achieved surpassing results in comparison to previous machine
learning algorithms on tasks such as image classification, natural
language processing, face recognition, and etc. The success of these
deep learning algorithms relys on their capacity to model complex and
non-linear relationships within data. However, finding the suitable
structure for these models has been a challenge for researchers. This
paper introduces Random Multimodel Deep Learning (RMDL): a new ensemble,
deep learning approach for classification. RMDL solves the problem of
finding the best deep learning structure and architecture while
simultaneously improving robustness and accuracy through ensembles of
deep learning architectures. In short, RMDL trains multiple models of
Deep Neural Network (DNN), Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) in parallel and combines their results to
produce better result of any of those models individually. To create
these models, each deep learning model has been constructed in a random
fashion regarding the number of layers and nodes in their neural network
structure. The resulting RDML model can be used for various domains such
as text, video, images, and symbolic. In this Project, we describe RMDL
model in depth and show the results for image and text classification as
well as face recognition. For image classification, we compared our
model with some of the available baselines using MNIST and CIFAR-10
datasets. Similarly, we used four datasets namely, WOS, Reuters, IMDB,
and 20newsgroup and compared our results with available baselines. Web
of Science (WOS) has been collected by authors and consists of three
sets~(small, medium and large set). Lastly, we used ORL dataset to
compare the performance of our approach with other face recognition
methods. These test results show that RDML model consistently outperform
standard methods over a broad range of data types and classification
problems.

Datasets for RMDL:

Text Datasets:

	IMDB Dataset [http://ai.stanford.edu/%7Eamaas/data/sentiment/]

	This dataset contains 50,000 documents with 2 categories.

	Reters-21578 Dataset [https://keras.io/datasets/]

	This dataset contains 21,578 documents with 90 categories.

	20Newsgroups
Dataset [https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups]

	This dataset contains 20,000 documents with 20 categories.

	Web of Science Dataset (DOI:
10.17632/9rw3vkcfy4.2 [http://dx.doi.org/10.17632/9rw3vkcfy4.2])

	Web of Science Dataset
WOS-11967 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 11,967 documents with 35 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-46985 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 46,985 documents with 134 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-5736 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 5,736 documents with 11 categories
which include 3 parents categories.

Image datasets:

	MNIST Dataset [https://en.wikipedia.org/wiki/MNIST_database]

	The MNIST database contains 60,000 training images and 10,000
testing images.

	CIFAR-10 Dataset [https://www.cs.toronto.edu/%7Ekriz/cifar.html]

	The CIFAR-10 dataset consists of 60000 32x32 colour images in 10
classes, with 6000 images per class. There are 50000 training
images and 10000 test images.

Face Recognition

The Database of Faces (The Olivetti Faces
Dataset) [http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html]

	The The Database of Faces dataset consists of 400 92x112 colour
images and grayscale in 40 person

Requirements for RMDL :

General:

	Python 3.5 or later see Instruction
Documents [https://www.python.org/]

	TensorFlow see Instruction
Documents [https://www.tensorflow.org/install/install_linux].

	scikit-learn see Instruction
Documents [http://scikit-learn.org/stable/install.html]

	Keras see Instruction Documents [https://keras.io/]

	scipy see Instruction
Documents [https://www.scipy.org/install.html]

GPU (if you want to run on GPU):

	CUDA® Toolkit 8.0. For details, see NVIDIA’s
documentation [https://developer.nvidia.com/cuda-toolkit].

	The NVIDIA drivers associated with CUDA Toolkit
8.0 [http://www.nvidia.com/Download/index.aspx].

	cuDNN v6. For details, see NVIDIA’s
documentation [https://developer.nvidia.com/cudnn].

	GPU card with CUDA Compute Capability 3.0 or higher.

	The libcupti-dev library,

Text and Document Classification

	Download GloVe: Global Vectors for Word Representation Instruction
Documents [https://nlp.stanford.edu/projects/glove/]

	Set data directory into
Global.py [https://github.com/kk7nc/RMDL/blob/master/src/Global.py]

	if you are not setting GloVe directory, GloVe will be downloaded

Parameters:

Text Classification

from RMDL import RMDL_Text

Text_Classification(x_train, y_train, x_test, y_test, batch_size=128,
 EMBEDDING_DIM=50,MAX_SEQUENCE_LENGTH = 500,
 MAX_NB_WORDS = 75000, GloVe_dir="",
 GloVe_file = "glove.6B.50d.txt",
 sparse_categorical=True, random_deep=[3, 3, 3],
 epochs=[500, 500, 500], plot=True,
 min_hidden_layer_dnn=1, max_hidden_layer_dnn=8,
 min_nodes_dnn=128, max_nodes_dnn=1024,
 min_hidden_layer_rnn=1, max_hidden_layer_rnn=5,
 min_nodes_rnn=32, max_nodes_rnn=128,
 min_hidden_layer_cnn=3, max_hidden_layer_cnn=10,
 min_nodes_cnn=128, max_nodes_cnn=512,
 random_state=42, random_optimizor=True, dropout=0.05):

Input

	x_train

	y_train

	x_test

	y_test

batch_size

	batch_size: Integer. Number of samples per gradient update. If
unspecified, it will default to 128.

EMBEDDING_DIM

	batch_size: Integer. Shape of word embedding (this number should be
same with GloVe or other pre-trained embedding techniques that be
used), it will default to 50 that used with pain of glove.6B.50d.txt
file.

MAX_SEQUENCE_LENGTH

	MAX_SEQUENCE_LENGTH: Integer. Maximum length of sequence or
document in datasets, it will default to 500.

MAX_NB_WORDS

	MAX_NB_WORDS: Integer. Maximum number of unique words in datasets,
it will default to 75000.

GloVe_dir

	GloVe_dir: String. Address of GloVe or any pre-trained directory,
it will default to null which glove.6B.zip will be download.

GloVe_file

	GloVe_dir: String. Which version of GloVe or pre-trained word
emending will be used, it will default to glove.6B.50d.txt.

	NOTE: if you use other version of GloVe EMBEDDING_DIM must be same
dimensions.

sparse_categorical

	sparse_categorical: bool. When target’s dataset is (n,1) should be
True, it will default to True.

random_deep

	random_deep: Integer [3]. Number of ensembled model used in RMDL
random_deep[0] is number of DNN, random_deep[1] is number of
RNN, random_deep[0] is number of CNN, it will default to [3, 3,
3].

epochs

	epochs: Integer [3]. Number of epochs in each ensembled model used
in RMDL epochs[0] is number of epochs used in DNN, epochs[1] is
number of epochs used in RNN, epochs[0] is number of epochs used
in CNN, it will default to [500, 500, 500].

plot

	plot: bool. True: shows confusion matrix and accuracy and loss

min_hidden_layer_dnn

	min_hidden_layer_dnn: Integer. Lower Bounds of hidden layers of
DNN used in RMDL, it will default to 1.

max_hidden_layer_dnn

	max_hidden_layer_dnn: Integer. Upper bounds of hidden layers of
DNN used in RMDL, it will default to 8.

min_nodes_dnn

	min_nodes_dnn: Integer. Lower bounds of nodes in each layer of DNN
used in RMDL, it will default to 128.

max_nodes_dnn

	max_nodes_dnn: Integer. Upper bounds of nodes in each layer of DNN
used in RMDL, it will default to 1024.

min_hidden_layer_rnn

	min_hidden_layer_rnn: Integer. Lower Bounds of hidden layers of
RNN used in RMDL, it will default to 1.

max_hidden_layer_rnn

	man_hidden_layer_rnn: Integer. Upper Bounds of hidden layers of
RNN used in RMDL, it will default to 5.

min_nodes_rnn

	min_nodes_rnn: Integer. Lower bounds of nodes (LSTM or GRU) in
each layer of RNN used in RMDL, it will default to 32.

max_nodes_rnn

	max_nodes_rnn: Integer. Upper bounds of nodes (LSTM or GRU) in
each layer of RNN used in RMDL, it will default to 128.

min_hidden_layer_cnn

	min_hidden_layer_cnn: Integer. Lower Bounds of hidden layers of
CNN used in RMDL, it will default to 3.

max_hidden_layer_cnn

	max_hidden_layer_cnn: Integer. Upper Bounds of hidden layers of
CNN used in RMDL, it will default to 10.

min_nodes_cnn

	min_nodes_cnn: Integer. Lower bounds of nodes (2D convolution
layer) in each layer of CNN used in RMDL, it will default to 128.

max_nodes_cnn

	min_nodes_cnn: Integer. Upper bounds of nodes (2D convolution
layer) in each layer of CNN used in RMDL, it will default to 512.

random_state

	random_state : Integer, RandomState instance or None, optional
(default=None)

	If Integer, random_state is the seed used by the random number generator;

random_optimizor

	random_optimizor : bool, If False, all models use adam optimizer.
If True, all models use random optimizers. it will default to True

dropout

	dropout: Float between 0 and 1. Fraction of the units to drop for
the linear transformation of the inputs.

Image Classification

from RMDL import RMDL_Image

Image_Classification(x_train, y_train, x_test, y_test, shape, batch_size=128,
 sparse_categorical=True, random_deep=[3, 3, 3],
 epochs=[500, 500, 500], plot=True,
 min_hidden_layer_dnn=1, max_hidden_layer_dnn=8,
 min_nodes_dnn=128, max_nodes_dnn=1024,
 min_hidden_layer_rnn=1, max_hidden_layer_rnn=5,
 min_nodes_rnn=32, max_nodes_rnn=128,
 min_hidden_layer_cnn=3, max_hidden_layer_cnn=10,
 min_nodes_cnn=128, max_nodes_cnn=512,
 random_state=42, random_optimizor=True, dropout=0.05)

Input

	x_train

	y_train

	x_test

	y_test

shape

	shape: np.shape . shape of image. The most common situation would be
a 2D input with shape (batch_size, input_dim).

batch_size

	batch_size: Integer. Number of samples per gradient update. If
unspecified, it will default to 128.

sparse_categorical

	sparse_categorical: bool. When target’s dataset is (n,1) should be
True, it will default to True.

random_deep

	random_deep: Integer [3]. Number of ensembled model used in RMDL
random_deep[0] is number of DNN, random_deep[1] is number of
RNN, random_deep[0] is number of CNN, it will default to [3, 3,
3].

epochs

	epochs: Integer [3]. Number of epochs in each ensembled model used
in RMDL epochs[0] is number of epochs used in DNN, epochs[1] is
number of epochs used in RNN, epochs[0] is number of epochs used
in CNN, it will default to [500, 500, 500].

plot

	plot: bool. True: shows confusion matrix and accuracy and loss

min_hidden_layer_dnn

	min_hidden_layer_dnn: Integer. Lower Bounds of hidden layers of
DNN used in RMDL, it will default to 1.

max_hidden_layer_dnn

	max_hidden_layer_dnn: Integer. Upper bounds of hidden layers of
DNN used in RMDL, it will default to 8.

min_nodes_dnn

	min_nodes_dnn: Integer. Lower bounds of nodes in each layer of DNN
used in RMDL, it will default to 128.

max_nodes_dnn

	max_nodes_dnn: Integer. Upper bounds of nodes in each layer of DNN
used in RMDL, it will default to 1024.

min_nodes_rnn

	min_nodes_rnn: Integer. Lower bounds of nodes (LSTM or GRU) in
each layer of RNN used in RMDL, it will default to 32.

max_nodes_rnn

	maz_nodes_rnn: Integer. Upper bounds of nodes (LSTM or GRU) in
each layer of RNN used in RMDL, it will default to 128.

min_hidden_layer_cnn

	min_hidden_layer_cnn: Integer. Lower Bounds of hidden layers of
CNN used in RMDL, it will default to 3.

max_hidden_layer_cnn

	max_hidden_layer_cnn: Integer. Upper Bounds of hidden layers of
CNN used in RMDL, it will default to 10.

min_nodes_cnn

	min_nodes_cnn: Integer. Lower bounds of nodes (2D convolution
layer) in each layer of CNN used in RMDL, it will default to 128.

max_nodes_cnn

	min_nodes_cnn: Integer. Upper bounds of nodes (2D convolution
layer) in each layer of CNN used in RMDL, it will default to 512.

random_state

	random_state : Integer, RandomState instance or None, optional
(default=None)

	If Integer, random_state is the seed used by the random number generator;

random_optimizor

	random_optimizor : bool, If False, all models use adam optimizer.
If True, all models use random optimizers. it will default to True

dropout

	dropout: Float between 0 and 1. Fraction of the units to drop for
the linear transformation of the inputs.

Example

MNIST

	The MNIST database contains 60,000 training images and 10,000
testing images.

Import Packages

from keras.datasets import mnist
import numpy as np
from RMDL import RMDL_Image as RMDL

Load Data

(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train_D = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')
X_test_D = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')
X_train = X_train_D / 255.0
X_test = X_test_D / 255.0
number_of_classes = np.unique(y_train).shape[0]
shape = (28, 28, 1)

Using RMDL

batch_size = 128
sparse_categorical = 0
Random_Deep = [3, 3, 3] ## DNN--RNN-CNN
RMDL.Image_Classification(X_train, y_train, X_test, y_test,shape,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs)

IMDB

	This dataset contains 50,000 documents with 2 categories.

Import Packages

import sys
import os
from RMDL import text_feature_extraction as txt
from keras.datasets import imdb
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

print("Load IMDB dataset....")
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=MAX_NB_WORDS)
print(len(X_train))
print(y_test)
word_index = imdb.get_word_index()
index_word = {v: k for k, v in word_index.items()}
X_train = [txt.text_cleaner(' '.join(index_word.get(w) for w in x)) for x in X_train]
X_test = [txt.text_cleaner(' '.join(index_word.get(w) for w in x)) for x in X_test]
X_train = np.array(X_train)
X_train = np.array(X_train).ravel()
print(X_train.shape)
X_test = np.array(X_test)
X_test = np.array(X_test).ravel()

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [500, 500, 500] ## DNN--RNN-CNN
Random_Deep = [3, 3,3] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=sparse_categorical,
 random_deep=Random_Deep,
 epochs=n_epochs)

Web Of Science

	Linke of dataset:
[image: _images/9rw3vkcfy4.6-blue.svg]Data [http://dx.doi.org/10.17632/9rw3vkcfy4.6]

	Web of Science Dataset
WOS-11967 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 11,967 documents with 35 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-46985 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 46,985 documents with 134 categories
which include 7 parents categories.

	Web of Science Dataset
WOS-5736 [http://dx.doi.org/10.17632/9rw3vkcfy4.2]

	This dataset contains 5,736 documents with 11 categories
which include 3 parents categories.

Import Packages

from RMDL import text_feature_extraction as txt
from sklearn.model_selection import train_test_split
from RMDL.Download import Download_WOS as WOS
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

path_WOS = WOS.download_and_extract()
fname = os.path.join(path_WOS,"WebOfScience/WOS11967/X.txt")
fnamek = os.path.join(path_WOS,"WebOfScience/WOS11967/Y.txt")
with open(fname, encoding="utf-8") as f:
 content = f.readlines()
 content = [txt.text_cleaner(x) for x in content]
with open(fnamek) as fk:
 contentk = fk.readlines()
contentk = [x.strip() for x in contentk]
Label = np.matrix(contentk, dtype=int)
Label = np.transpose(Label)
np.random.seed(7)
print(Label.shape)
X_train, X_test, y_train, y_test = train_test_split(content, Label, test_size=0.2, random_state=4)

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [100, 100, 100] ## DNN--RNN-CNN
Random_Deep = [3, 3, 3] ## DNN--RNN-CNN

RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs)

Reuters-21578

	This dataset contains 21,578 documents with 90 categories.

Import Packages

import sys
import os
import nltk
nltk.download("reuters")
from nltk.corpus import reuters
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from RMDL import RMDL_Text as RMDL

Load Data

documents = reuters.fileids()

train_docs_id = list(filter(lambda doc: doc.startswith("train"),
 documents))
test_docs_id = list(filter(lambda doc: doc.startswith("test"),
 documents))
X_train = [(reuters.raw(doc_id)) for doc_id in train_docs_id]
X_test = [(reuters.raw(doc_id)) for doc_id in test_docs_id]
mlb = MultiLabelBinarizer()
y_train = mlb.fit_transform([reuters.categories(doc_id)
 for doc_id in train_docs_id])
y_test = mlb.transform([reuters.categories(doc_id)
 for doc_id in test_docs_id])
y_train = np.argmax(y_train, axis=1)
y_test = np.argmax(y_test, axis=1)

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [120, 120, 120] ## DNN--RNN-CNN
Random_Deep = [3, 3, 3] ## DNN--RNN-CNN
RMDL.Text_Classification(X_train, y_train, X_test, y_test,
 batch_size=batch_size,
 sparse_categorical=True,
 random_deep=Random_Deep,
 epochs=n_epochs)

Olivetti Faces

	There are ten different images of each of 40 distinct subjects. For
some subjects, the images were taken at different times, varying the
lighting, facial expressions (open / closed eyes, smiling / not
smiling) and facial details (glasses / no glasses). All the images
were taken against a dark homogeneous background with the subjects
in an upright, frontal position (with tolerance for some side
movement).

Import Packages

from sklearn.datasets import fetch_olivetti_faces
from sklearn.model_selection import train_test_split
from RMDL import RMDL_Image as RMDL

Load Data

number_of_classes = 40
shape = (64, 64, 1)
data = fetch_olivetti_faces()
X_train, X_test, y_train, y_test = train_test_split(data.data,
 data.target, stratify=data.target, test_size=40)
X_train = X_train.reshape(X_train.shape[0], 64, 64, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 64, 64, 1).astype('float32')

Using RMDL

batch_size = 100
sparse_categorical = 0
n_epochs = [150, 150, 150] ## DNN--RNN-CNN
Random_Deep = [3, 0, 3] ## DNN--RNN-CNN
RMDL.Image_Classification(X_train, y_train, X_test, y_test,
 shape,
 batch_size=batch_size,
 random_deep=Random_Deep,
 epochs=n_epochs)

Results

Image Classification

	MNIST Dataset [https://en.wikipedia.org/wiki/MNIST_database]

	The MNIST database contains 60,000 training images and 10,000 testing images.

	CIFAR-10 Dataset [https://www.cs.toronto.edu/%7Ekriz/cifar.html]

	The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

MNIST annd CIFAR-10

Methods	MNIST	CIFAR-10
:—————-:	:——:	:——–:
Deep L2-SVM	0.87	11.9
Maxout Network	0.94	11.68
BinaryConnect	1.29	9.90
PCANet-1	0.62	21.33
gcForest	0.74	31.00
RMDL (3 RDLs)	0.51	9.89
RMDL (9 RDLs)	0.41	9.1
RMDL (15 RDLs)	0.21	8.74
RMDL (30 RDLs)	0.18	8.79

Text Classification

	Reters-21578 Dataset [https://keras.io/datasets/]

	This dataset contains 21,578 documents with 90 categories.

	Web of Science Dataset (DOI: 10.17632/9rw3vkcfy4.2 [http://dx.doi.org/10.17632/9rw3vkcfy4.2])

Web of Science Dataset annd Reuters-21578

	WOS-5,736	WOS-11,967	WOS-46,985	Reuters-21578
:———————————————:	:———:	:———-:	:———-:	:————-:
Deep Neural Networks (DNN)	86.15	80.02	66.95	85.3
Convolutional Neural Netwroks (CNN)	88.68	83.29	70.46	86.3
Recurrent Neural Networks (DNN)	89.46	83.96	72.12	88.4
Naive Bayesian Classifier	78.14	68.8	46.2	83.6
Support Vector Machine (SVM)	85.54	80.65	67.56	86.9
Support Vector Machine (SVM using TF-IDF)	88.24	83.16	70.22	88.93
Stacking Support Vector Machine	85.68	79.45	71.81	NA
HDLTex	90.42	86.07	76.58	NA
RMDL (3 RDLs)	90.86	87.39	78.39	89.10
RMDL (9 RDLs)	92.60	90.65	81.92	90.36
RMDL (15 RDLs)	92.66	91.01	81.86	89.91
RMDL (30 RDLs)	93.57	91.59	82.42	90.69

20NewsGroup and IMDB

	20Newsgroups Dataset [https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups]

	This dataset contains 20,000 documents with 20 categories.

	IMDB Dataset [http://ai.stanford.edu/%7Eamaas/data/sentiment/]

	This dataset contains 50,000 documents with 2 categories.

Methods	IMDB	20NewsGroup
:—————————————-:	:———:	:—————:
Deep Neural Networks (DNN)	88.55	86.5
Convolutional Neural Netwroks (CNN)	87.44	82.91
Recurrent Neural Networks (RNN)	88.59	83.75
Naive Bayesian Classifier (NBC)	83.19	81.67
Support Vector Machine (SVM)	87.97	84.57
Support Vector Machine (SVM using TF-IDF)	88.45	86
RMDL (3 RDLs)	89.91	86.73
RMDL (9 RDLs)	90.13	87.62
RMDL (15 RDLs)	90.79	87.91

Face Recognition

The Database of Faces (The Olivetti Faces Dataset) [http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html]

	he files are in PGM format, and can conveniently be viewed on UNIX (TM) systems using the ‘xv’ program. The size of each image is 92x112 pixels, with 256 grey levels per pixel. The images are organised in 40 directories (one for each subject), which have names of the form sX, where X indicates the subject number (between 1 and 40). In each of these directories, there are ten different images of that subject, which have names of the form Y.pgm, where Y is the image number for that subject (between 1 and 10).

The Olivetti Faces Dataset

Methods	5 Images	7 Images	9 Images
:——————————:	:——–:	:——–:	:——–:
gcForest	91.00	96.67	97.50
Random Forest	91.00	93.33	95.00
Convolutional Neural Netwroks	86.50	91.67	95.00
SVM (rbf kernel)	80.50	82.50	85.00
k-nearest neighbors (kNN)	76.00	83.33	92.50
Deep Neural Networks (DNN)	85.50	90.84	92.5
RMDL (3 RDL)	93.50	96.67	97.5
RMDL (9 RDL)	93.50	98.34	97.5
RMDL (15 RDL)	94.50	96.67	97.5
RMDL (30 RDL)	95.00	98.34	100.00

More Exanmple link [https://github.com/kk7nc/RMDL/tree/master/Examples]

[image: _images/RMDL_Results.png]Results

Error and Comments:

Send an email to kk7nc@virginia.edu

Citations

@inproceedings{Kowsari2018RMDL,
title={RMDL: Random Multimodel Deep Learning for Classification},
author={Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E. and Jafari Meimandi, Kiana and Barnes, Laura E.},
booktitle={Proceedings of the 2018 International Conference on Information System and Data Mining},
year={2018},
DOI={https://doi.org/10.1145/3206098.3206111},
organization={ACM}
}

 _static/minus.png

_static/plus.png

_static/up.png

_images/RMDL_Results.png
MNIST

Test Train
1.4 1 1.75 —— RDLI
—— RDL2
—— RDL3
1.50 A —— RDILA4
1.2 —— RDLS
125 1 —— RDL6
n —— RDL7
L0 —— RDLS
o™ 1.00 4 J—
p—
0.75 —
0.8 1 [
0.50
0.6 —
0.25 1
0 25 S50 75 100 125 150 175 200 25 75 100 125 150 175 200
epoch epoch
—— RDLI
—— RDL2
0.8 0.8 —— RDL3
| —— RDL4
0.7 07 - —— RDLS
—— RDL6
0.6 0.6 —— RDL7
—— RDLS
v 05 054 ~— RDL9
172] ~— RDLIO
S 04 0.4 - — RDLII
—— RDLI2
03 4 —— RDLI3
—— RDLI4
02 —— RDLIS
0.1 4
0.05

WOS-5736

Reuters-21578

Accuracy

Accuracy

20

40

epoch

80

100

Train

1.0 —— RDL1

—— RDL2

—— RDL3

—— RDL4

0.81 —— RDL5

—— RDL6

—— RDL7

—— RDLS

0.6 —— RDL9
0.4
0.21

20 40 60 80 100

1.0 4 —— RDL1

—— RDL2

00 —— RDL3

7 —— RDL4

—— RDLS

g 4 —— RDL6

—— RDL7

—— RDL8

0.7 4 —— RDL9
0.6
0.4 1

20 40 60 30 100

epoch

_images/RMDL.jpg
LSTM
GRU
LSTM
GRU
LSTM
GRU
LSTM
GRU

‘SFewt 10 souayuas TNy T A
| 3o uoneuasaidar YU 1aAe] [euORN[OATIO)

———

ToAeT nduy IoAeT UappT 1oke T ndino

_static/up-pressed.png

_images/RDL.jpg
Input

[roc1 J[ko2 |[_RDL3 |

00-000-000-0 - 00-0

L Jo-

Voting for X; Voting for Xz Voting for X,,

{M

Majority Voting
Based on 7 RDLs

nav.xhtml

 Table of Contents

 		
 Random Multimodel Deep Learning (RMDL):

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

